Generalized polynomial chaos and random oscillators

نویسندگان

  • D. Lucor
  • G. E. Karniadakis
چکیده

We present a new approach to obtain solutions for general random oscillators using a broad class of polynomial chaos expansions, which are more efficient than the classical Wiener–Hermite expansions. The approach is general but here we present results for linear oscillators only with random forcing or random coefficients. In this context, we are able to obtain relatively sharp error estimates in the representation of the stochastic input as well as the solution. We have also performed computational comparisons with Monte Carlo simulations which show that the new approach can be orders of magnitude faster, especially for compact distributions. Copyright 2004 John Wiley & Sons, Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic Modeling of Flow-Structure Interactions using Generalized Polynomial Chaos

We present a generalized polynomial chaos algorithm to model the input uncertainty and its propagation in flow-structure interactions. The stochastic input is represented spectrally by employing orthogonal polynomial functionals from the Askey scheme as the trial basis in the random space. A standard Galerkin projection is applied in the random dimension to obtain the equations in the weak form...

متن کامل

Heterogeneous Cell Population Dynamics: Equation-Free Uncertainty Quantification Computations

We propose a computational approach to modeling the collective dynamics of populations of coupled heterogeneous biological oscillators. In contrast to Monte Carlo simulation, this approach utilizes generalized Polynomial Chaos (gPC) to represent random properties of the population, thus reducing the dynamics of ensembles of oscillators to dynamics of their (typically significantly fewer) repres...

متن کامل

Performance Evaluation of Generalized Polynomial Chaos

In this paper we review some applications of generalized polynomial chaos expansion for uncertainty quantification. The mathematical framework is presented and the convergence of the method is demonstrated for model problems. In particular, we solve the first-order and second-order ordinary differential equations with random parameters, and examine the efficiency of generalized polynomial chaos...

متن کامل

On the Convergence of Generalized Polynomial Chaos Expansions

A number of approaches for discretizing partial differential equations with random data are based on generalized polynomial chaos expansions of random variables. These constitute generalizations of the polynomial chaos expansions introduced by Norbert Wiener to expansions in polynomials orthogonal with respect to non-Gaussian probability measures. We present conditions on such measures which im...

متن کامل

Modeling Uncertainty in Steady State Diffusion Problems via Generalized Polynomial Chaos

We present a generalized polynomial chaos algorithm for the solution of stochastic elliptic partial differential equations suject to uncertain inputs. In particular, we focus on the solution of the Poisson equation with random diffusivity, forcing and boundary conditions. The stochastic input and solution are represented spectrally by employing the orthogonal polynomial functionals from the Ask...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004